African Languages: Assessing the text input difficulty

Hugh Paterson III

Copyright Hugh Paterson III. License: CC-BY-NC-SA Cite as: Hugh J. Paterson III. 2015. African Languages: Assessing the text input difficulty. Paper presented at the 46th Annual Conference of African Linguistics. Held at the University of Oregon 26-28. March 2015 Text input Basically I mean typing!

- Is not orthography
- Is complex
- Happens in a variety of environments various combinations of devices and sociolinguistic and socio-technological settings.

Typing happens in different places

With different tools.

Single Character Key

1	2 авс	3 Def	1	2 ABC	3 DEF	
4 бні	5 JKL	6 мпо	4 GHI	5 JKL	6 MNO	•
7 PQRS	8 тиv	9 wxyz	7 PQRS	8 TUV	9 WXYZ	×
+ * #	0	×	* #	0 +		Next

Single Finger Keyboard

Multi Character Keyboard

Text input

• And then we want the text to look like different things...

Sample Ezaa Text

Ekwo-ozhi-a be shi l'eka mbedua, bu Jémusu bu onye ozhi Chileke, buru onye ozhi Onye-Nwe-Oha bu Jisosu Kuráyisutu. Ndu mu l'ede iya anu bu ikfu iri l'ebo ono, bu ndu nke Kuráyisutu, dzuru mgboko.
Ekele mu unu-o. Unwunna mu, nteke iwhe adata byakfutaru unu; g'o dulee, unu wojeru iya l'oo iwhe eswa byaru unu. Unu makwaru-a
l'oo nteke l'aadata unu nke ekwekwe, unu kweru be unu l'e-shi nwuta otaru iwhe nshi. 4 Unu talekwawho nshi tafu iya l'ishi ngge unu dukota ree, dzukwaawho oke; t'o bo du iwhe l'a-whodu l'ehu unu.
Ekwo-Ozhi, JÉMUSU Deru 1: 1-4]

Sample Bekwarra Text

Ami Ijems ng'm sha okulo ka Atabuchi ahe n'Ukaani iten Ijisos Kraist, m kang n'amin woo b'e yi eni Atabuchi b'e ka paa ye mia iye angin woo. Ebwiyaa, k'unyang ng'iyem atitye-atitye a shi n'amin ng'i kan achianaani inen na ngin, amin è chi r'irinen k'irityem, k'ucheche dee amin e nyie dee, k'unyang ng'iyem abin a tyung dee achi-anaani inen i yi ang'áchìchī nga, i sha irityem inen k'i bya ha. Amin è ye k'úchú bi irityem he, k'amin è chi r'iyem woo ab'e sha uni k'i giri, k'amin è waa abo chaa iyem achaani fo re.

[lleta Ang'ijems a Fuo I:2-4]

So our fingers dance different dances

Ezaa Sample Text

So our fingers dance different dances

Full Text

Ezaa Sample Text

But dancing is work... right?

Bekwarra Sample Text

But dancing is work... right?

Full Text

Bekwarra Sample Text

Hit load, hand balancing, and finger balancing

Text input

And we hope to do different things by using text... Filling various social communicative functions

Randolph Quirk Sidney Greenbaum Geoffrey Leech Jan Svartvik

Assumptions about success

- allow the digital text input of an orthography
- allow typing a text without fatigue
- maximize typing speed
- reduce the number of typing errors
- allow rapid mastery of the touch typing method

What to compare

Six criteria

- tapping load distribution
- number of keystrokes
- hand alternation
- finger alternation
- finger posture
- hit direction (little finger to thumb)

Keyboarding Typology

- Single Character Key example QWERTY
- Single finger keyboard
- Multiple Character Keyboard T9 phone
- Multiple finger Keyboard

What else is helpful to compare?

- Perceptual distance
- Measuring dissonance

Finger load

Finger	1	2	3	4	5	6	7	8	9	10 Total Keystrokes		
ENG finger count	1,18	1,017	1,895	2,316	2,530	0	2,351	845	1,619	292	14,048	
											13369	95.17%
ENG finger load	8.42	7.24%	13.49%	16.49%	18.01%	0%	16.74%	6.02%	11.52%	2.08%	100%	
EZA finger count	1,31	1,268	2,124	1,442	3,011	0	3,710	1,630	1,931	3,558	19,990	
											17141	85.75%
EZA finger load	6.58	6.34%	10.63%	7.21%	15.06%	0%	18.56%	8.15%	9.66%	17.80%	100%	
BKV finger count	2222	300	1822	1968	3641	0	4280	2884	503	2342	19962	
											18275	91.55%
BKV finger load	11.1	1.50%	9.13%	9.86%	18.24%	0%	21.44%	14.45%	2.52%	11.73%	100%	

Conceptualizing the problem space

- Distance Time equation
 - The shortest distance between two points is a straight line.

Some socio-technical implications

- Our devices help us to make choices about language use.
- These choices have long reaching impacts for language vitality.